Markov Chains in Random Environments: The Case of Markovian Environments

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability of Conditional Markov Processes and Markov Chains in Random Environments

We consider a discrete time hidden Markov model where the signal is a stationary Markov chain. When conditioned on the observations, the signal is a Markov chain in a random environment under the conditional measure. It is shown that this conditional signal is weakly ergodic when the signal is ergodic and the observations are nondegenerate. This permits a delicate exchange of the intersection a...

متن کامل

Stability and Approximation of Random Invariant Measures of Markov Chains in Random Environments

We consider finite-state Markov chains driven by a P-stationary ergodic invertible process σ : Ω → Ω, representing a random environment. For a given initial condition ω ∈ Ω, the driven Markov chain evolves according to A(ω)A(σω) · · ·A(σn−1), where A : Ω → Md is a measurable d × d stochastic matrix-valued function. The driven Markov chain possesses P-a.e. a measurable family of probability vect...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

Sparse Learning of Markovian Population Models in Random Environments

Markovian population models are suitable abstractions to describe well-mixed interacting particle systems in situation where stochastic fluctuations are significant due to the involvement of low copy particles. In molecular biology, measurements on the single-cell level attest to this stochasticity and one is tempted to interpret such measurements across an isogenic cell population as different...

متن کامل

Stability and approximation of invariant measures of Markov chains in random environments

We consider finite-state Markov chains driven by stationary ergodic invertible processes representing random environments. Our main result is that the invariant measures of Markov chains in random environments (MCREs) are stable under a wide variety of perturbations. We prove stability in the sense of convergence in probability of the invariant measure of the perturbed MCRE to the original inva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1980

ISSN: 0091-1798

DOI: 10.1214/aop/1176994620